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Kernel Mean Embedding: Definition

Given a kernel K defined on a topological set X with corresponding RKHS H, the mean
embedding of a Borel probability distribution P on X is the function µP : X → R in H defined
as:

µP(y) = EX∼P [K (X , y)]

For any x , x ′ ∈ X ,

K (x , x ′) = ⟨Kx ,Kx ′⟩H

The kernel trick: For any f ∈ H and
x ∈ X ,

K (x , x ′) = ⟨f ,Kx⟩H

For any Borel measure P and Q,

E(X ,Y )∼P,Q [K (X ,Y )] = ⟨µP, µQ⟩H

The kernel trick for expectations: For any
f ∈ H and Borel measure P,

EX∼P [f (X )] = ⟨f , µP⟩H
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Kernel Mean Embedding: Expectation evaluation in an RKHS

Expectations of all RKHS functions in H can be evaluated using the result of the kernel
trick.

EX∼P [f (X )] = ⟨f , µP⟩H
The kernel mean embedding: µP(y) = EX∼P [K (X , y)]

The kernel trick: EX∼P [f (X )] = ⟨f , µP⟩H for all f ∈ H
The kernel mean embedding can be estimated using the empirical mean of N samples
from P:

µ̂P(x) =
1
N

N∑
i=1

K (Xi , x), Xi
iid∼ P
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Kernel Mean Embedding: Does it exist?

If EX∼P

[√
K (X ,X )

]
< ∞, then there exists a unique µP ∈ H such that:

EX∼P [f (X )] = ⟨f , µP⟩H, ∀f ∈ H

Let TPf = EX∼P [f (X )]. By assumption, TPf is bounded:

|TPf | = |EX∼P [f (X )]|
≤ EX∼P [|f (X )|]
= EX∼P [|⟨f ,Kx⟩H|]

≤ EX∼P

[√
K (X ,X )

]
∥f ∥H

By Riez’s theorem, there exists µP ∈ H such that TPf = ⟨f , µP⟩H.
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Intuition Behind Kernel Mean Embeddings

Compact Representation: Maps a distribution P to a single point µP in the RKHS.
Efficient Computation: Use the kernel trick to compute in high-dimensional spaces
implicitly.
Key Characteristics: The embedding µP captures the essential features or "fingerprint"
of P.
Comparison Ready: This sets the stage for comparing distributions (e.g., using MMD).
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What is MMD?

The maximum mean discrepancy (MMD) is the distance between mean embeddings,

MMD2 = ∥µP − µQ∥2
H

= ⟨µP − µQ, µP − µQ⟩H
= ⟨µP, µP⟩H + ⟨µQ, µQ⟩H − 2⟨µP, µQ⟩H
= EX ,X ′∼P

[
k(X ,X ′)

]︸ ︷︷ ︸
(i)

+EY ,Y ′∼Q
[
k(Y ,Y ′)

]︸ ︷︷ ︸
(i)

− 2EX∼P,Y∼Q [k(X ,Y )]︸ ︷︷ ︸
(ii)

(i) within-distribution similarity
(ii) between-distribution similarity
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Intuition Behind MMD

Fingerprint Distance: MMD measures the distance between the “fingerprints” (kernel
mean embeddings) of two distributions.
Interpreting MMD: A small MMD implies that the distributions are similar, a large
MMD implies they are not.
Witness Function: f ∗ =

µP−µQ

∥µP−µQ∥ is the direction that maximally distinguishes P from Q

Nonlinear Comparison: The kernel trick allows MMD to capture complex, nonlinear
differences.
Characteristic Kernels: With a characteristic kernel, MMD is zero if and only if the
distributions are identical.

Exponential, Gaussian, and others that can be proven to be characteristic if the mapping is
injective.
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Visual Representation of MMD

Unit ball
µP − µQ

f ∗

f ∗ =
µP − µQ

∥µP − µQ∥

f ∗ maximally
distinguishes P from

Q
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Estimating MMD

Given samples {X1, . . . ,Xn} ∼ P and {Y1, . . . ,Ym} ∼ Q, the empirical MMD is:

̂MMD2 (P,Q) =
1
n2

∑
i ,j

k(Xi ,Xj) +
1
m2

∑
i ,j

k(Yi ,Yj)−
2
nm

∑
i ,j

k(Xi ,Yj)

=
1
n2

∑
i ,j

k(Xi ,Xj) +
1
m2

∑
i ,j

k(Yi ,Yj)−
2
nm

∑
i ,j

k(Xi ,Yj)

The empirical MMD is a biased estimator of the true MMD. The bias can be corrected by using
the unbiased estimator:

̂MMD2 (P,Q) =
1

n(n − 1)

∑
i ̸=j

k(Xi ,Xj) +
1

m(m − 1)

∑
i ̸=j

k(Yi ,Yj)−
2
nm

∑
i ,j

k(Xi ,Yj)
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Applications of MMD

Two-sample testing:
Test whether two samples come from the same distribution
MMD as test statistic + permutation test for significance

Generative models:
Evaluate quality of generated samples
MMD as training loss (MMD-GANs)

This project: Sliding-window two-sample tests for regime detection
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Motivation: Why Detect Regime Changes?

Financial markets exhibit non-stationary behavior
Periods of qualitatively different dynamics: bull markets, crashes, recovery
Traditional approaches assume parametric models (e.g., HMM with Gaussian emissions)

Kernel methods approach:
Compare full distributions before and after each time point
Detect changes without specifying what form they take
Nonparametric: let the data speak
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Sliding Window MMD

At each candidate change point t:
1 Extract before window: X = {xt−w , . . . , xt−1}
2 Extract after window: Y = {xt , . . . , xt+w−1}
3 Compute M̂MD

2
(X ,Y )

4 Test significance via permutation test

Significant MMD ⇒ distributional shift at time t

t

Before (X )After (Y )

t
w days w days

Slide window by step size s
Repeat for all t
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Permutation Test for Significance

Under H0: distributions before and after are identical (P = Q)

Procedure:
1 Pool samples: Z = X ∪ Y
2 For b = 1, . . . ,B :

Randomly permute Z
Split into pseudo-samples X ′, Y ′

Compute M̂MD
2
b(X

′,Y ′)

3 Compute p-value: p̂ = 1
B

∑B
b=1 1

[
M̂MD

2
b ≥ M̂MD

2
obs

]
Alternative metric: Standard deviations from null mean

z =
M̂MD

2
obs − µ̄null

σ̂null

More informative when p-values cluster near zero.
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Feature Representation

Input: Daily OHLCV data for SPY (S&P 500 ETF), 2020–2024

Features per day:
Log prices: log(Open), log(High), log(Low), log(Close)
Log volume: log(Volume)

Preprocessing:
Standardize each feature (zero mean, unit variance)
Prevents high-magnitude features (e.g., volume) from dominating kernel distances

Kernel: RBF with median heuristic bandwidth

k(x , y) = exp(−γ∥x − y∥2), γ =
1

2σ2 , σ = median(|X − median(X )|)
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Detected Regime Boundaries

Window = 30 days, Step = 5 days, Threshold = 10 std from null
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MMD Statistic Over Time
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Validation Against Known Events

Detected Boundary Market Event

Feb 2020 COVID-19 crash onset
Mar–Apr 2020 Fed intervention / recovery begins
Jan 2022 Start of 2022 bear market
Jun 2022 Mid-2022 volatility spike
Oct 2022 2022 market bottom
Oct–Nov 2023 Bull market acceleration

Detected boundaries correspond to genuine market events,
not spurious statistical artifacts.
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The Three Knobs

Parameter Affects Recommendation

Kernel What differences are captured RBF + median heuristic
Window size Statistical power 30–60 days
Step size Resolution, smoothing, runtime 5 days

Kernel choice: All kernels detect major events (COVID crash)
Window size: Larger windows ⇒ more statistical power ⇒ more detections
Step size: Larger steps ⇒ implicit smoothing ⇒ fewer detections, faster
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Kernel Comparison

RBF, Polynomial (d=2, d=3), Linear — all detect COVID crash
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Window Size Effect

Larger windows have more statistical power (tighter null distribution)
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Step Size Effect

Step size is a runtime vs. resolution trade-off (also reduces noise)
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Effect of Feature Standardization

Without standardization: volume (∼18–20) dominates price features (∼5–6)

With standardization: all features contribute equally

Recommendation: Always standardize for multi-feature inputs
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Future Work: Which Features Matter?

Once regimes are detected, which features discriminate them?

Kernel-Target Alignment (KTA):

KTA(K ,Y ) =
⟨K ,YY⊤⟩F

∥K∥F · ∥YY⊤∥F

Measures how well kernel matrix aligns with regime labels
Optimize ARD kernel bandwidths via gradient ascent on KTA:

k(x , y) = exp

(
−

D∑
d=1

(xd − yd)
2

2σ2
d

)

Features with small σd are most discriminative

Goal: Identify whether volatility, momentum, or price structure best characterizes detected
regimes.

Elijah Whitham-Powell (Portland State University) Market Regime Detection with MMD2 December 9, 2025 28 / 32



Future Work: Regime-Specific Prediction

Question: Do predictive relationships change across regimes?

Approach:
1 Fit global model: Kernel Ridge Regression on all data
2 Fit regime-specific models: Separate KRR per detected regime
3 Compare prediction error on held-out data

If regime-specific models outperform:
Evidence that predictive structure genuinely differs across regimes
Motivation for adaptive/switching models in practice
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Conclusion

MMD for Regime Detection:
Nonparametric: detects distributional shifts without specifying the form
Validated: detected boundaries correspond to known market events
Tunable: window size, step size, threshold control sensitivity

Key Findings:
All kernels detect major events (robustness)
Larger windows ⇒ more statistical power
Feature standardization is essential

Code: github.com/whitham-powell/mmd-regime-change
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Questions

Questions?

Code: github.com/whitham-powell/mmd-regime-change
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