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Kernel Mean Embedding: Definition

Given a kernel K defined on a topological set X' with corresponding RKHS #, the mean

embedding of a Borel probability distribution P on X is the function up : X — R in H defined
as:

pp(y) = Exp [K(X,y)]

e Forany x, X' € X, @ For any Borel measure P and Q,

K(x, x") = (K, K ) Ex,vy~p,0 [K(X, Y)] = (up, po)#

@ The kernel trick: For any f € ‘H and

@ The kernel trick for expectations: For any
x e X,

f € H and Borel measure P,

K(x,x") = (f, Ki)u Exp [f(X)] = (f, pp)n

Elijah Whitham-Powell (Portland State University)

Market Regime Detection with MMD?2

December 9, 2025



Kernel Mean Embedding: Expectation evaluation in an RKHS

@ Expectations of all RKHS functions in H can be evaluated using the result of the kernel
trick.

Ex~p [f(X)] = (f, up)n
@ The kernel mean embedding: up(y) = Exp [K(X,y)]
@ The kernel trick: Ex..p [f(X)] = (f, pp)y for all f € H
@ The kernel mean embedding can be estimated using the empirical mean of N samples
from P
1 < iid
fip(x) = & z_; K(Xi,x), X;i~P
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Kernel Mean Embedding: Does it exist?

If Ex.p [ K(X,X)] < 00, then there exists a unique pp € H such that:
Ex~p [f(X)] = (f.pup)n, VFEH
Let Tpf = Ex.p [f(X)]. By assumption, Tpf is bounded:

| Tef| = [Ex~p [f(X)]]
< Ex~e [[f(X)]]
= Ex~p [[(f, Ka)nl]

< Exp [ VKX X)) [l

By Riez's theorem, there exists up € H such that Tpf = (f, up)y.
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Intuition Behind Kernel Mean Embeddings

Compact Representation: Maps a distribution P to a single point up in the RKHS.

Efficient Computation: Use the kernel trick to compute in high-dimensional spaces
implicitly.

Key Characteristics: The embedding up captures the essential features or "fingerprint"
of P.

e Comparison Ready: This sets the stage for comparing distributions (e.g., using MMD).
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What is MMD?

The maximum mean discrepancy (MMD) is the distance between mean embeddings,

MMD? = ||up — pgll3,

= (Up — HQ, Hp — HQ)H
= (up, pp)n + (1, Q)H — 2{up, HQ)H
= EX,X’NIP’ [k(X,X’)] +Ey7y/NQ [k(Y, Y/)] — 2EX~IP’,Y~Q [k(X, Y)]

N~

(i) 0 (i)

(i) within-distribution similarity

(ii) between-distribution similarity
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Intuition Behind MMD

e Fingerprint Distance: MMD measures the distance between the “fingerprints” (kernel
mean embeddings) of two distributions.

o Interpreting MMD: A small MMD implies that the distributions are similar, a large
MMD implies they are not.

@ Witness Function: f* = ﬁ is the direction that maximally distinguishes P from Q

@ Nonlinear Comparison: The kernel trick allows MMD to capture complex, nonlinear
differences.

e Characteristic Kernels: With a characteristic kernel, MMD is zero if and only if the
distributions are identical.

o Exponential, Gaussian, and others that can be proven to be characteristic if the mapping is
injective.
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Visual Representation of MMD
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Estimating MMD

Given samples {X1,..., Xy} ~Pand {Y1,..., Ymn} ~ Q, the empirical MMD is:

MMD2 (P, Q) = Zk(X,,X 2Zk —%Zk(x Y;)
i
2
- ,,gzkmx 22 ) - 2K Y)
ij

The empirical MMD is a biased estimator of the true MMD. The bias can be corrected by using
the unbiased estimator:

MMD?2 (P, Q) =

S s S - A )
iJ

1751 1751
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Applications of MMD

Two-sample testing:
@ Test whether two samples come from the same distribution

@ MMD as test statistic + permutation test for significance

Generative models:
o Evaluate quality of generated samples
@ MMD as training loss (MMD-GANSs)

This project: Sliding-window two-sample tests for regime detection
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Motivation: Why Detect Regime Changes?

@ Financial markets exhibit non-stationary behavior
@ Periods of qualitatively different dynamics: bull markets, crashes, recovery

e Traditional approaches assume parametric models (e.g., HMM with Gaussian emissions)

Kernel methods approach:
@ Compare full distributions before and after each time point
@ Detect changes without specifying what form they take

@ Nonparametric: let the data speak
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Sliding Window MMD

At each candidate change point t: Before (X)After (V)
@ Extract before window: X = {x¢_y,...,Xxt—1} I I |
@ Extract after window: Y = {x¢,..., X¢yw—1} : t
—2
© Compute MMD (X, Y) w days ~ w days

@ Test significance via permutation test Slide window by step size s
L o _ _ Repeat for all t
Significant MMD =- distributional shift at time ¢t
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Permutation Test for Significance

Under Hp: distributions before and after are identical (P = Q)
Procedure:

@ Pool samples: Z=XUY
Q@ Forb=1,...,B:

e Randomly permute Z
e Split into pseudo-samples X', Y’

2
o Compute MMD,(X’, Y")
© Compute pvalue: p= 138 1 [MMDb > MMDobs]

Alternative metric: Standard deviations from null mean

—2

MMDobs B ﬁnull

~
Onull

zZ =

More informative when p-values cluster near zero.
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Feature Representation

Input: Daily OHLCV data for SPY (S&P 500 ETF), 2020-2024

Features per day:

o Log prices: log(Open), log(High), log(Low), log(Close)
e Log volume: log(Volume)

Preprocessing:
e Standardize each feature (zero mean, unit variance)

@ Prevents high-magnitude features (e.g., volume) from dominating kernel distances

Kernel: RBF with median heuristic bandwidth

1 . .
Kixoy) = ep(—llx = yI2), 7= 5 5. o= median(|X — median(X)))
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Validation Against Known Events

Detected Boundary Market Event

Feb 2020 COVID-19 crash onset

Mar—Apr 2020 Fed intervention / recovery begins
Jan 2022 Start of 2022 bear market

Jun 2022 Mid-2022 volatility spike

Oct 2022 2022 market bottom

Oct—Nov 2023 Bull market acceleration

Detected boundaries correspond to genuine market events,
not spurious statistical artifacts.
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The Three Knobs

Parameter  Affects Recommendation
Kernel What differences are captured ~ RBF + median heuristic
Window size Statistical power 30-60 days

Step size Resolution, smoothing, runtime 5 days

e Kernel choice: All kernels detect major events (COVID crash)
@ Window size: Larger windows = more statistical power = more detections

@ Step size: Larger steps = implicit smoothing = fewer detections, faster
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Kernel Comparison

Kernel Comparison Overlay (window=30d)

—— REF (median)

—— Polynomial (d=2)
Polynomial (d=3)

—— Linear

=== Threshold (10.0)

Std from Null

RBF, Polynomial (d=2, d=3), Linear — all detect COVID crash
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Window Size Effect

Window Size Ci i Overlay (RBF kernel)
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Sensitivity vs Window Size {threshold=10.0)
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Larger windows have more statistical power (tighter null distribution)
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Window Size Effect

‘Window Size Comparison Overlay (RBF kernel)
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Larger windows have more statistical power (tighter null distribution)
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Window Size Effect

Sensitivity vs Window Size (threshold=10.0)
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Larger windows have more statistical power (tighter null distribution)
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Step Size Effect

Step Size Comparison (window=30d, RBF kernel)
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Step size is a runtime vs. resolution trade-off (also reduces noise)
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Step Size Effect

Step Size Comparison (window=30d, RBF kernel)
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Step size is a runtime vs. resolution trade-off (also reduces noise)
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Step Size Effect

Runtime vs Step Size Boundaries vs Step Size
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Step size is a runtime vs. resolution trade-off (also reduces noise)
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Effect of Feature Standardization

Effect of Feature Standardization on Regime Detection
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@ Without standardization: volume (~18-20) dominates price features (~5-6)
@ With standardization: all features contribute equally

@ Recommendation: Always standardize for multi-feature inputs
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Future Work: Which Features Matter?

Once regimes are detected, which features discriminate them?

Kernel-Target Alignment (KTA):

(K, YYT)r
IKIE- 1YY Tl

KTA(K, Y) =

@ Measures how well kernel matrix aligns with regime labels
@ Optimize ARD kernel bandwidths via gradient ascent on KTA:

2\ (xd — yd)’
Kxoy) = exp [~ 3 eyl
— 04
d=1
@ Features with small o4 are most discriminative

Goal: Identify whether volatility, momentum, or price structure best characterizes detected
regimes.
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Future Work: Regime-Specific Prediction

Question: Do predictive relationships change across regimes?

Approach:
O Fit global model: Kernel Ridge Regression on all data

@ Fit regime-specific models: Separate KRR per detected regime
© Compare prediction error on held-out data

If regime-specific models outperform:
@ Evidence that predictive structure genuinely differs across regimes
@ Motivation for adaptive/switching models in practice
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Conclusion

MMD for Regime Detection:
@ Nonparametric: detects distributional shifts without specifying the form
o Validated: detected boundaries correspond to known market events

@ Tunable: window size, step size, threshold control sensitivity

Key Findings:
@ All kernels detect major events (robustness)
@ Larger windows = more statistical power

o Feature standardization is essential

Code: github.com/whitham-powell/mmd-regime-change
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github.com/whitham-powell/mmd-regime-change
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Questions?

Code: github.com/whitham-powell/mmd-regime-change
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